Plant Recognition using Stereo Leaf Image using Gray-Level Co-Occurrence Matrix
نویسندگان
چکیده
Adequate knowledge, such as information about the unique characteristics of each plant, is necessary to identify plant. Researchers have made plant recognition based on leaf characteristics. The leaf image-based plant recognition in view of different angles is a new challenge. In this study, the research on the plant recognition was conducted based on leaf images resulted from 3D stereo camera. The 3D images are very influential in the development of computer vision theory, which can provide more detailed information of an object. One of the information that can be obtained is about the position of the object in its image with the background as well as of the camera. One of the ways used to obtain such information is to calculate the disparity. However, this method will only tell the position of the object compared to other objects without that of range. Sum Absolute Different (SAD) is a method that can be used to find the disparity value. The SAD method does not require heavy computations and long process. Before calculating the disparity, all the images should be previously segmented. The objective of this segmentation is to separate all the objects from the background. Furthermore, filtering and polynomial transformation at the results of disparity is necessary to improve the quality of resultant images. Furthermore, 22 features were extracted using GLCM features (second order statistics) of images resulted from disparity improvement. The highest accuracy of match in the recognition of plant varieties was obtained at 50 cm distance and in the recognition of three plant varieties was 83.3%.
منابع مشابه
Fault condition recognition based on multi-scale co-occurrence matrix for copper flotation process
Image processing technology has been successfully applied to fault detection of copper flotation processes, and the key to realize image processing based fault condition recognition is accurately extracting froth image features closely related to key production indices. To extract texture features of froth images in real-time, a multi-scale gray level co-occurrence matrix (M-GLCM) method is pro...
متن کاملAutomatic Detection of Whitefly Pest using Statistical Feature Extraction and Image Classification Methods
---------------------------------------------------------------------***--------------------------------------------------------------------Abstract Pest detection in plants and crops is essential for production of good quality food, improved quality of life and a stable agricultural economy. Excessive use of pesticides for pest control is harmful to plants, animals as well as human beings. Dig...
متن کاملPlant Leaves Recognition and Classification Model Based on Image Features and Neural Network
In this paper, on the basis of image processing, plant leaves are respectively extracted 7 HU invariant moment eigenvalues, three shape eigenvalues and eight texture eigenvalues based on gray level co-occurrence matrix. Then the paper adopts BP network, which has been optimized by L-M algorithm to identify the classes of the plant leaves based on 7, 10 and 18 eigenvalues. The experimental resul...
متن کاملAn Effective CBIR using Texture
Content Based Image Retrieval is one of the active research areas. With emerging technologies of multimedia ,communication and processing large volume of image database is used . Current approaches include the use of color, texture and shape information for CBIR. Texture feature is a kind of visual characteristic that does not rely on color and intensity and reflects the intrinsic phenomenon of...
متن کاملA Study for Texture Feature Extraction of High-Resolution Satellite Images Based on a Direction Measure and Gray Level Co-Occurrence Matrix Fusion Algorithm
To address the problem of image texture feature extraction, a direction measure statistic that is based on the directionality of image texture is constructed, and a new method of texture feature extraction, which is based on the direction measure and a gray level co-occurrence matrix (GLCM) fusion algorithm, is proposed in this paper. This method applies the GLCM to extract the texture feature ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- JCS
دوره 10 شماره
صفحات -
تاریخ انتشار 2014